

# Landfill Leachate Management with Adsorbent-Enhanced Constructed Wetlands

PIs: Mauricio Arias, PhD, PE Sarina Ergas, PhD, PE

University of South Florida Department of Civil & Environmental Engineering Tampa, FL

September 8, 2022



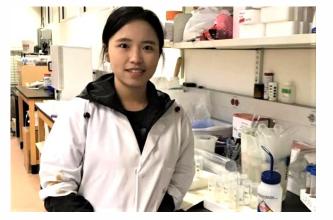


- 1. Introduction to Technical Awareness Group and Team Members
- 2. Overview of Phase II Research Plan
- 3. Practical Specific Benefits for End Users
- 4. Timeline and Milestones
- 5. Project Deliverables and Dissemination
- 6. Metrics to Date





| Name                  | Position/Affiliation                                           |
|-----------------------|----------------------------------------------------------------|
| James S. Bays         | Technology Fellow, Jacobs Engineering                          |
| Kimberly A. Byer      | Solid Waste Management Division Director, Hillsborough Co.     |
| Stephanie Bolyard     | Research Engineer, NCDOT Research and Development Office       |
| William J. Cooper     | Prof. Emeritus, UC Irvine (Courtesy Prof. Env. Engineering UF) |
| Ashley Danely-Thomson | Assistant Professor, Florida Gulf Coast University             |
| Viraj deSilva         | Sr. Treatment Process Leader / Freese and Nichols, Inc.        |
| Scott Knight          | Wetland Solutions, Inc.                                        |
| Ashley Evans          | Market Area Engineer, Waste Management, Inc., Florida          |
| James Flynt           | Chief Engineer, Orange Co Utilities, Solid Waste Division      |
| Melissa Madden-Mawhir | Senior Program Analyst, FDEP                                   |
| Marcus Moore          | Facilities Manager, Hillsborough County Water Resources Dept.  |
| Luke Mulford          | Senior Professional Engineer, Hillsborough County              |
| Larry E. Ruiz         | Landfill Operations Manager Hillsborough County                |






Mauricio Arias (Co-PI)

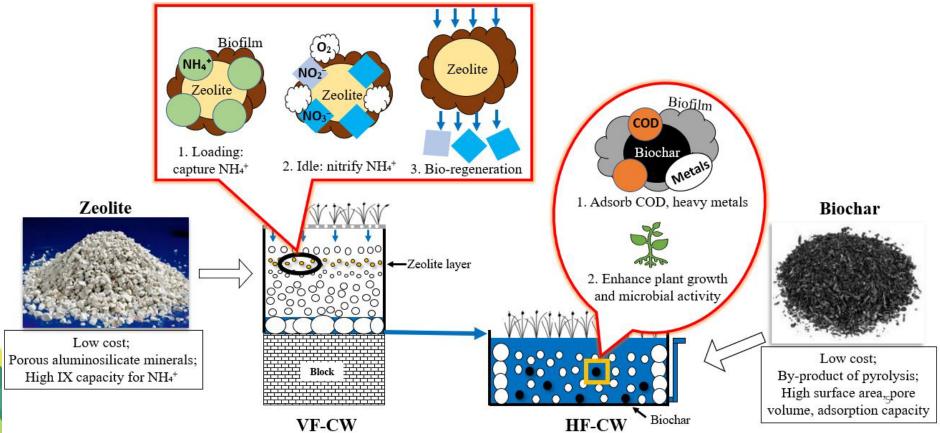


Sarina Ergas (Co-PI)



Xia Yang (PhD Student)




Nisa Ishfaqun (MS Student)



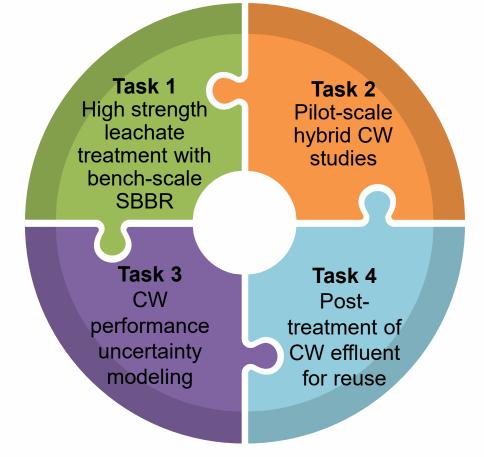
Thanh "Misty" Lam, MS (Alumna)



- Landfill leachate: High ammonia, color, recalcitrant organic matter and metal concentrations.
- Hybrid vertical/horizontal subsurface flow constructed wetlands: cost-effective for onsite leachate treatment.
- INNOVATIVE SCIENTIFIC CONTRIBUTION: Use of adsorbent media (zeolite and biochar) to enhance treatment performance






# PHASE II RESEARCH PLAN



- 1. What are the effects of leachate strength and hydraulic loading on adsorbent enhanced bioreactor performance?
- 2. What is the cumulative effect of zeolite and biochar addition on ammonia and recalcitrant organic matter removal in VF-HF CWs?
- 3. What are the effects of uncertainty in leachate quality, loading rates, and adsorbent addition on CW performance?
- 4. Does the addition of biochar promote wetland plant growth and transpiration?
- 5. Can adsorbent-amended VF-HF CWs provide a good pre-treatment method for UF-RO to produce reclaim water?



**Project Goal**: To optimize the design and operation of low-cost, low-complexity adsorbent-enhanced CWs for landfill leachate management.



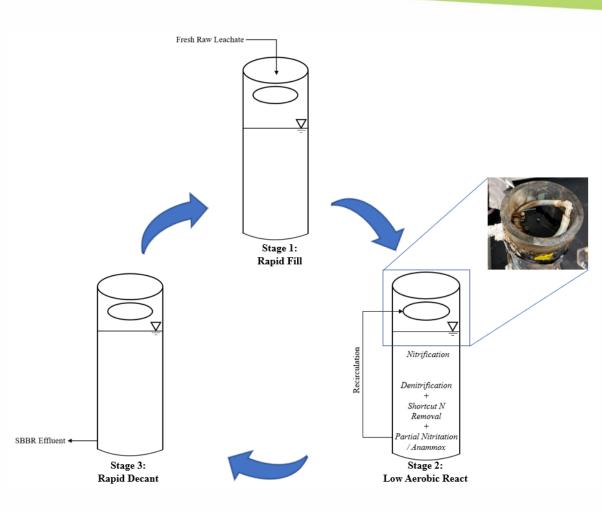
#### UNIVERSITY OF SOUTH FLORIDA. Task 1: High Strength Leachate Treatment with Bench-Scale SBBR

Objective: Investigate treatment of high-strength leachate collected from Florida landfills in bench-scale adsorbent amended SBBR.

| Parameter              | Hillsborough<br>County SE | Orange County<br>Cell 7B/8 |
|------------------------|---------------------------|----------------------------|
| NOx (mg/L)             | 80                        | BDL                        |
| TAN (mg/L)             | 375                       | 1,550                      |
| sCOD (mg/L)            | 460                       | 6,200                      |
| Elec. Cond.<br>(mS/cm) | 13.7                      | 19.7                       |
| UV254 (A)              | 3.51                      | 92.8                       |
| UV456 (A)              | 0.242                     | 5.69                       |





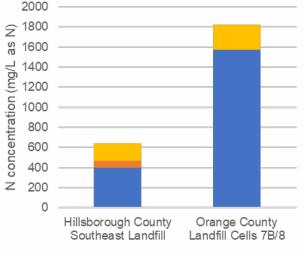



## **SBBR Operation**

| HRT<br>(days) | Fill/Decant Volume<br>(mL) |
|---------------|----------------------------|
| 21            | 100                        |
| 14            | 130                        |
| 10.5          | 180                        |

## **Chemical Analysis**

- Total Inorganic Nitrogen Species
- sCOD
- Color





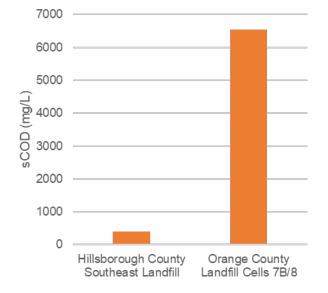

# Pollutant Removal Efficiencies Comparison to Our Phase I SBBR Study with Lower Strength Leachate

## Nitrogen Species of Raw Landfill Leachate

## TIN Removal Efficiency and Rate Comparison



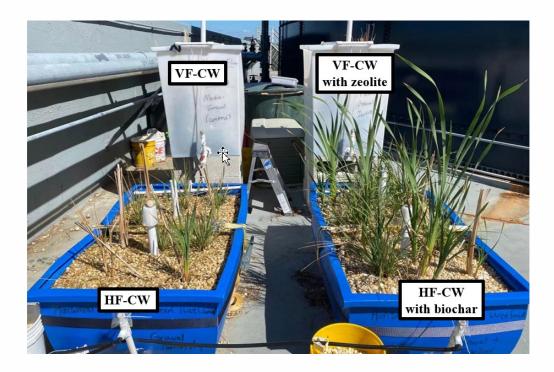
TAN NO2 NO3 Org-N


| HRT (days) | TIN Removal Efficiency (%)                      | ficiency (%) TIN Removal Rate<br>(mg/L-day) |  |  |  |  |  |  |
|------------|-------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
|            | Hillsborough County Southeast Landfill Leachate |                                             |  |  |  |  |  |  |
| 14         | 99                                              | 33.2                                        |  |  |  |  |  |  |
| 9          | 57                                              | 29.8                                        |  |  |  |  |  |  |
| 9          | 99.7                                            | 52.1                                        |  |  |  |  |  |  |
|            | Orange County Landfill Cells 7B/8 Leachate      |                                             |  |  |  |  |  |  |
| 21         | 99.8                                            | 74.6                                        |  |  |  |  |  |  |
| 14         | 97.3                                            | 109                                         |  |  |  |  |  |  |
| 10.5       | 81.6                                            | 122                                         |  |  |  |  |  |  |



# Pollutant Removal Efficiencies Comparison to Our Phase I SBBR Study with Lower Strength Leachate

## sCOD Concentrations of Raw Landfill Leachate

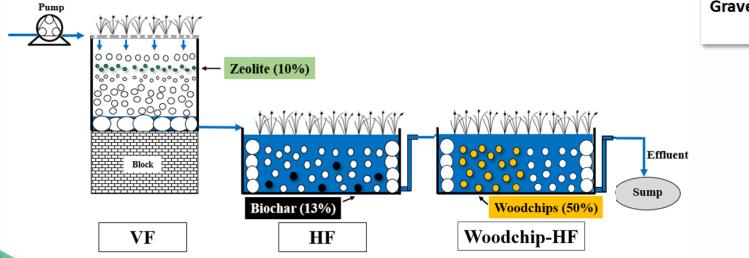

## sCOD Removal Efficiency and Rate Comparison



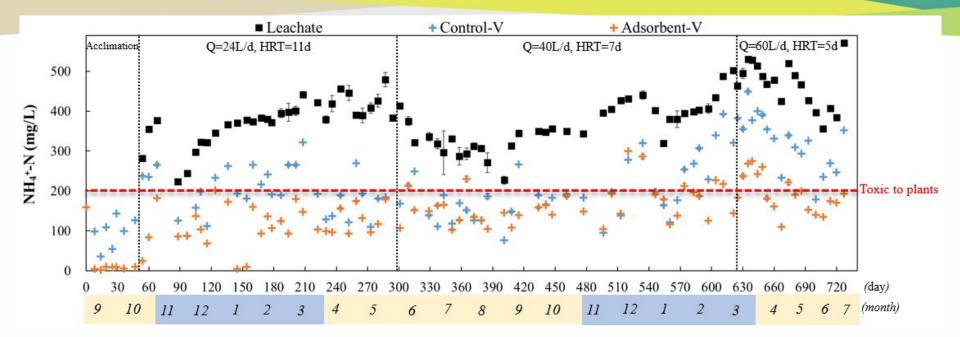
| HRT (days)                                 | sCOD Removal Efficiency (%)                     | sCOD Removal Rate (mg/L-<br>day) |  |  |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|
|                                            | Hillsborough County Southeast Landfill Leachate |                                  |  |  |  |  |  |  |  |
| 14                                         | 83.4                                            | 23.8                             |  |  |  |  |  |  |  |
| 9                                          | 61.3                                            | 27.2                             |  |  |  |  |  |  |  |
| Orange County Landfill Cells 7B/8 Leachate |                                                 |                                  |  |  |  |  |  |  |  |
| 21                                         | 48.7                                            | 151                              |  |  |  |  |  |  |  |
| 14                                         | 46.5                                            | 217                              |  |  |  |  |  |  |  |
| 10.5                                       | 35.9                                            | 223                              |  |  |  |  |  |  |  |



Objective: Investigate long-term leachate quality and quantity performance of pilot-scale CWs operated at Hillsborough County's SE landfill under varying conditions.







|    | Ope             | _         |     |     |           |
|----|-----------------|-----------|-----|-----|-----------|
|    | Flow Rate (L/d) |           |     |     |           |
| Ι  | Aco             | climation |     | 50  |           |
| Ш  | 24              | 1.6       | 11  | 250 | Day 540 🕟 |
| Ш  | 40              | 2.7       | 7   | 250 |           |
| IV | 60              | 4.0       | 4.5 | 190 |           |

Woodchip-CW

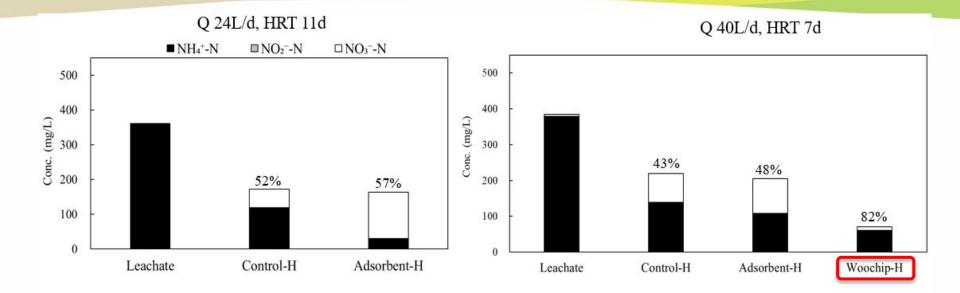






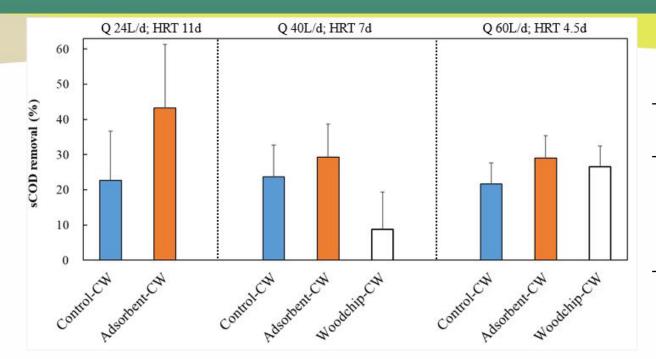


|                            | Q 24L/d; HRT 11d | Q 40L/d; HRT 7d | Q 60L/d; HRT 4.5d |
|----------------------------|------------------|-----------------|-------------------|
| Control-V                  | 43 ± 16.2        | 63 ± 19.9       | 86 ± 25.1         |
| Adsorbent-V                | 62 ± 15.5        | 80 ± 22.6       | $163 \pm 24.0$    |
| Mass loading rate<br>(g/d) | 9                | 15              | 28                |


- Zeolite enhances nitrification;
- Correlation

(nitrification vs. mass loading rate):

Control-V (+0.62)


Adsorbent-V (+0.92)





Q 60L/d, HRT 4.5d

# **USE** Task 2: Results-Organic Matter and Plants



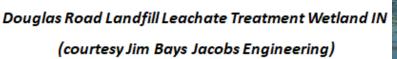
SOUTH FLORIDA.

| Effluent concentration   |     |   |  |  |  |
|--------------------------|-----|---|--|--|--|
| COD BOD<br>(mg/L) (mg/L) |     |   |  |  |  |
| Control                  | 350 | 6 |  |  |  |
| Adsorbent                | 330 | 2 |  |  |  |
| Woodchip                 | 420 | 7 |  |  |  |





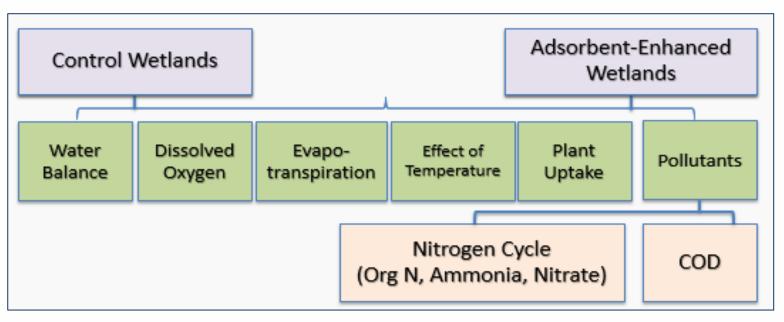
- Feeding frequency effect test
- Harvest plants (both roots and aboveground) for TN measurement
- Microbial community analysis








Objective: To evaluate the effects of uncertainty on leachate quality/quantity and adsorbent composition on the performance of a pilot-scale CW system.


- Assess the effect of uncertainty in leachate quality, loading rates, and adsorbent addition on CW performance.
- Scaling up for a system capable of treating the average leachate discharge from the Hillsborough County's SE landfill (60,000-130,000 gal/day).

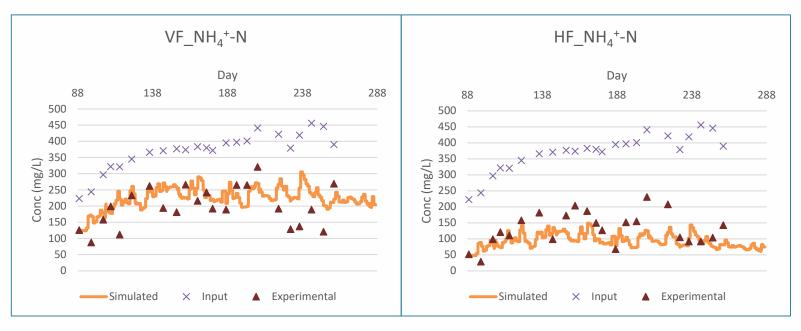






#### Overview of processes included:



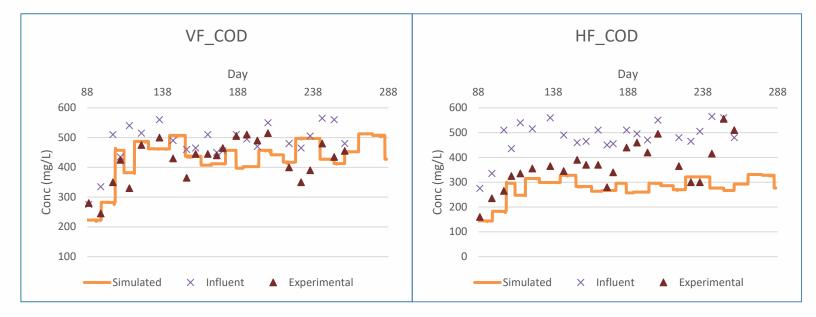

- Preliminary modeling and experiments carried out to characterize cells' hydraulics
- Simulations carried out at hourly time steps, for a total of 7 months
- Data from Task 2 used to parametrize the model



#### **Control Wetlands**

Take home messages related to  $NH_4^+-N$ :

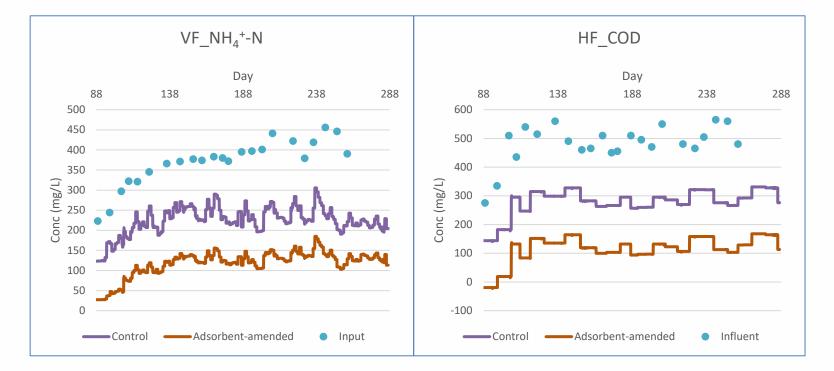
- The model captures NH<sub>4</sub><sup>+</sup>-N reduction trends in the VF-CW
- The model slightly overestimates NH<sub>4</sub><sup>+</sup>-N reduction in the HF-CW






#### **Control Wetlands**

Take home messages related to COD:


- The model captures COD reduction trends in the VF-CW
- The model overestimated COD reduction in the HF-CW



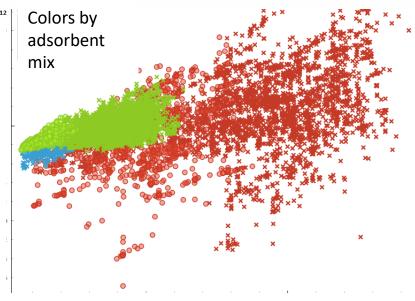


#### **Control vs Adsorbent-Enhanced**

The model predicts the effect of the amendments in COD and  $NH_4^+-N$  reduction

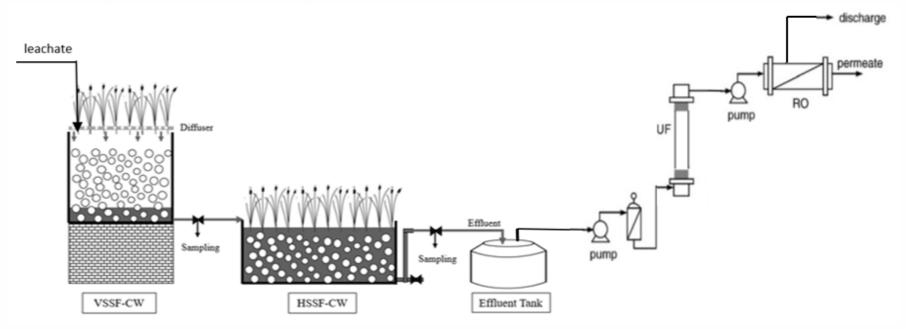





- Complete model calibration
- Carry out uncertainty analysis

CW Performance

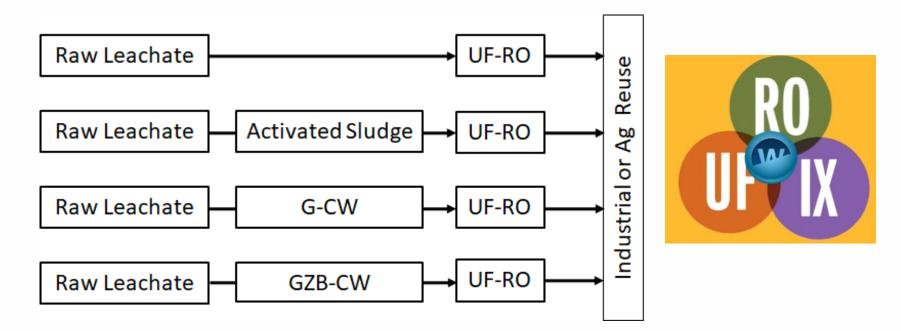
Complete scale-up analysis for landfill average leachate discharge


Uncertainty analysis example

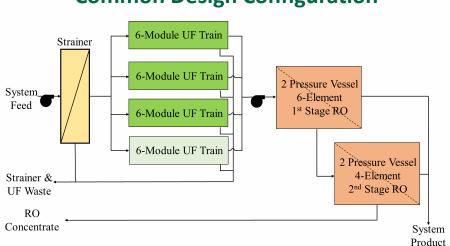
(from Benjamin, Zhang, and Arias (2020)





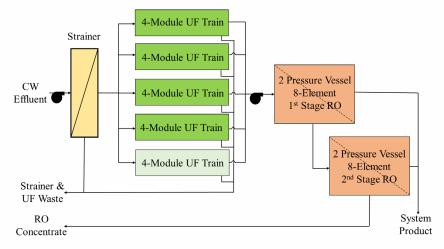

Objective: Evaluate the most technically and economically viable landfill leachate treatment and reuse strategy using Hillsborough County as a case study.




Proposed treatment train for reclaim water production from leachate.



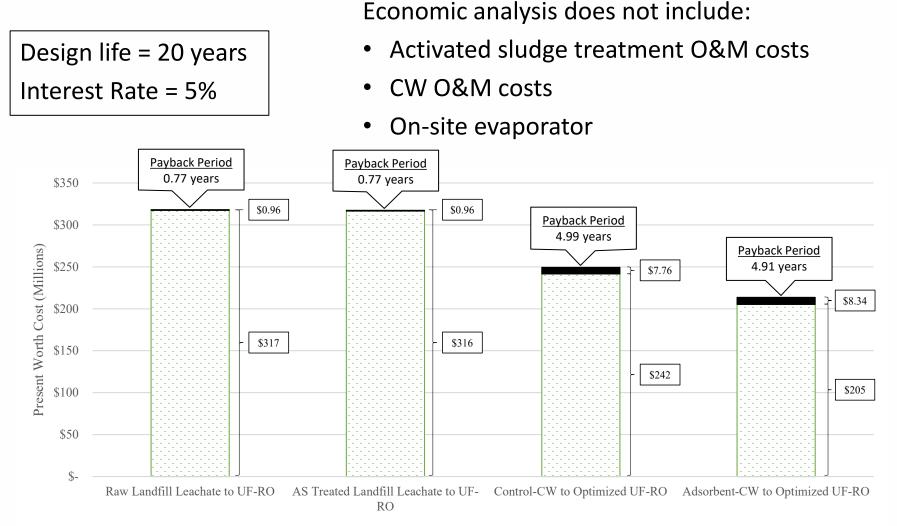
- Effluent from CWs meets agricultural and industrial reuse standards, except for electrical conductivity.
- Design and simulate UF-RO system using WAVE Software








#### **Common Design Configuration**






#### Water Recovery

| UF-RO Feed             | Permeate<br>m <sup>3</sup> /day | Concentrate<br>m³/day | Water Recovery<br>% |
|------------------------|---------------------------------|-----------------------|---------------------|
| Raw Leachate           | 306                             | 451                   | 42.1                |
| AS Treated Leachate    | 307                             | 450                   | 42.2                |
| Control-CW Optimized   | 380                             | 377                   | 52.2                |
| Adsorbent-CW Optimized | 416                             | 341                   | 57.2                |





□O&M Costs ■Capital Cost



"Leachate management can be a significant component of the Long-Term care estimates based on the current models for leachate generation."

- Benefits of onsite landfill leachate management with CWs:
  - Low complexity, low capital and O&M costs.
  - Proven performance for TN, BOD<sub>5</sub>, COD, TSS, Color removal.
- Addition of low cost natural adsorbents, zeolite and biochar, enhanced treatment performance of hybrid VF-HF CWs.
- It is economically feasible to reclaim landfill leachate for agricultural or industrial reuse using CW => UF => RO treatment.



|    | Task                         | Q1 | Q2 | Q3 | Q4 | Q5 | Deliverable                             |
|----|------------------------------|----|----|----|----|----|-----------------------------------------|
| 1) | Bench-scale studies          | ✓  | ✓  |    |    |    | Proof of concept, publications          |
| 2) | Pilot-scale studies          | ✓  | ✓  | ✓  | ✓  | 0  | Long term performance data, publication |
| 3) | Uncertainty modeling         | ✓  | ✓  | ✓  | 0  | 0  | Uncertainty analysis, publication       |
| 4) | Post-treatment for reuse     | ✓  | ✓  |    |    |    | Scale-up, economic & acceptability      |
|    | Education & outreach         | ✓  | ✓  | ✓  | ✓  |    | Students, professionals, community      |
|    | TAG meetings                 | ✓  |    |    | ✓  |    | Slides, videos and photos in website    |
|    | Quarterly & final<br>reports | ✓  | ✓  | ✓  |    | 0  | Reports for Hinkley and USF websites    |



Scientific publications:

- 1. Gao, B., Yang, X., Dasi, E. A., Lam, T., Arias, M. E., & Ergas, S. J. (2022). Enhanced landfill leachate treatment in sequencing batch biofilm reactors (SBBRs) amended with zeolite and biochar. *Journal of Chemical Technology & Biotechnology*, *97*(3), 759-770.
- 2. Gao, Bisheng. Enhanced Nitrogen, Organic Matter and Color Removal from Landfill Leachate by Biological Treatment Processes with Biochar and Zeolite. University of South Florida, 2020.
- 3. Lam, Thanh Thieu. Use of Biochar and Zeolite for Landfill Leachate Treatment: Experimental Studies and Reuse Potential Assessment. Masters Thesis, University of South Florida, 2021.
- 4. Mulligan, Lillian. *Development of a Numerical Process Model for Adsorbent-amended Constructed Wetlands.* Masters Thesis, University of South Florida, 2021.
- 5. Lam, T. et al. Feasibility of Landfill Leachate Reuse through Adsorbent-Enhanced Constructed Wetlands and Ultrafiltration-Reverse Osmosis (Manuscript under review in *Desalination*)

| Presenter(s) | Venue                                              | Date       |
|--------------|----------------------------------------------------|------------|
| Xia Yang     | American Ecological Engineering Society Annual     | June 2022  |
|              | Meeting, Baltimore                                 |            |
| Sarina Ergas | Association of Environmental Engineering & Science | June 2022  |
|              | Professors, St. Louis                              |            |
| Misty Lam    | Florida Water Resources Conference, Daytona Beach  | April 2022 |



## **Metrics: Past Student Researchers**



Erica Dasi, PhD







Bisheng Gao, MS



Lillian Mulligan, MS



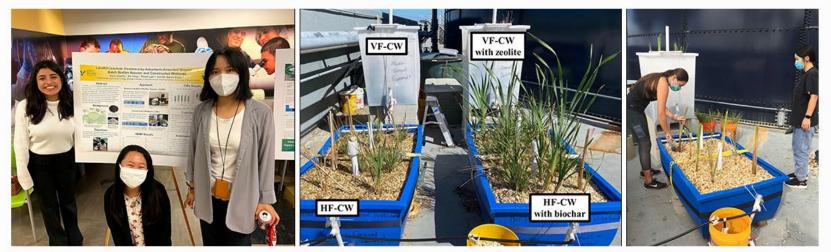
Magdalena Shafee (Undergrad)



Irene Castillo (Community College)



Nicholas Truong (Undergrad Student)




# **Thank You!**

constructed-wetlands.eng.usf.edu

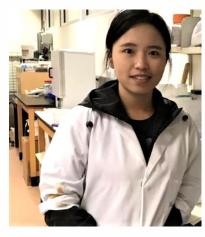
Home Reports Proposals Meetings Contact Us

#### Project Title: Cost-Effective Hybrid Constructed Wetlands for Landfill Leachate Reclamation



Pls: Sarina J. Ergas (sergas@usf.edu), and Mauricio Arias (mearias@usf.edu)








Mauricio Arias, PE mearias@usf.edu



Sarina Ergas, PE, BCEE <u>sergas@usf.edu</u>

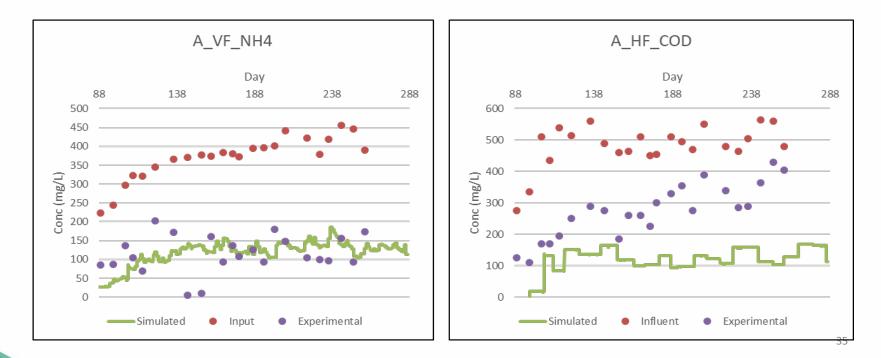


Xia Yang <u>xiayang@usf.edu</u>



Thanh (Misty) Lam misty.lam@jacobs.com




Nisa Ishfaqun <u>ishfaqun@usf.edu</u>



• Take home messages

### Adsorbent Amended Wetlands

- The model captures NH4 reducton trend in zeolite- amended VSSF
- The model significantly overestimates COD reduction biochar-amended HSSF

